
Generalization Bounds for Model-based Algorithm Configuration

Algorithm Configuration

Algorithms in practice have tunable parameters which 

greatly affect the performance.

A carefully selected parameter configuration makes the 

algorithm perform strong on particular instances.

Model-based AC is the most popular approach in 

practice, based on a Bayesian optimization framework:

1. Randomly sample a number of initial parameters.

2. Evaluate these params on the training set.

3. Build a dataset of tuples <param, instance feature, 

algorithm performance>, and train a surrogate 

model predicting the performance.

4. Use a local search method to find a promising param 

configuration based on the surrogate model.

5. Evaluate this configuration, update the dataset and 

Goto Step 3 until the iteration limit is exceeded.

• Continuous parameter space in [0,1]n and bounded 

performance metric in [0,1]

• Random forest surrogate model

• Expected improvement acquisition function

• Sampling promising parameters using Metropolis-

Hastings

Model-based Algorithm Configuration

Our Main Theorem

Zhiyang Chen, Hailong Yao, Xia Yin

Tsinghua University, University of Science and Technology Beijing

(Lindauer and Biedenkapp, 2020)

Manually tuning parameters are time-consuming.

Automated algorithm configurators (AC) are proposed 

to find promising parameters.

- Sample a set of problem instances as a training set.

- Find a high-performing configuration on this set.

Generalization Bounds

Though model-based AC performs well in practice, a 

theoretical question remains unsolved:

The parameters found by algorithm configurators 

are evaluated on sampled problem instances

from a distribution. Why do they perform well on 

other unseen instances?

Our contributions: We answer this question by 

presenting a generalization guarantee for model-based 

AC under mild assumptions.

Expected performance on distribution Average performance on training set

Our Settings

Our Technique

• Generalization bound via algorithmic stability

• Prove the stability of model-based AC via bounding 

the KL divergence between two perturbed path

• A uniform stability result on the random forest model 

via a dual Rademacher complexity bound

• A stability result of the Metropolis-Hasting

Sampled 
Instances

Parameter 
domain

Objective 
(run-time)

Algorithm 
Configurator

Target 
Algorithm

Instance I with 
parameter θ

Objective on I 
and θ

Final Configuration θ*

Training set

Instance 1 Instance 2 Instance 3 …… Instance

Unseen

?

• m i.i.d. instances

• Q decision trees in the random forest model

• n parameters and d features of problem instances

• T iterations

• The expected generalization error is


	幻灯片 1

