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Algorithm Configuration

Algorithms in practice have tunable parameters which
greatly affect the performance.

A carefully selected parameter configuration makes the
algorithm perform strong on particular instances.

Domain Default vs. Optimized

Answer Set Solving [Gebser et al. 2011] up to 14x speedup
Al Planning [Vallati et al. 2013] up to 40x speedup
Mixed Integer Programming [Hutter et al. 2010] up to 52x speedup
Satisfiability Solving [Hutter et al. 2017] up to 3000x speedup

Minimum Vertex Cover [Wagner et al. 2017] up to 9% absolute impr.
Machine Learning [Feuer et al. 2015] up to 35% absolute impr.
Deep Learning [Zimmer et al. 2020] up to 49% absolute impr.

(Lindauer and Biedenkapp, 2020)

Manually tuning parameters are time-consuming.
Automated algorithm configurators (AC) are proposed
to find promising parameters.
- Sample a set of problem instances as a training set.
- Find a high-performing configuration on this set.
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Model-based Algorithm Configuration

Model-based AC is the most popular approach in
practice, based on a Bayesian optimization framework:
1. Randomly sample a number of initial parameters.
2. Evaluate these params on the training set.

3. Build a dataset of tuples <param, instance feature,
algorithm performance>, and train a surrogate
model predicting the performance.

4. Use a local search method to find a promising param
configuration based on the surrogate model.

5. Evaluate this configuration, update the dataset and
Goto Step 3 until the iteration limit is exceeded.

Generalization Bounds

Though model-based AC performs well in practice, a
theoretical question remains unsolved:

The parameters found by algorithm configurators
are evaluated on sampled problem instances
from a distribution. Why do they perform well on
other unseen instances?

Our contributions: We answer this question by
presenting a generalization guarantee for model-based
AC under mild assumptions.
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Our Settings

» Continuous parameter space in [0,1]" and bounded

performance metric in [0,1]

 Random forest surrogate model
« Expected improvement acquisition function
« Sampling promising parameters using Metropolis-

Hastings

Our Main Theorem

m I.1.d. instances

Q decision trees in the random forest model

n parameters and d features of problem instances
T iterations

The expected generalization error is
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Our Technique

Generalization bound via algorithmic stability

Prove the stability of model-based AC via bounding
the KL divergence between two perturbed path

A uniform stability result on the random forest model
via a dual Rademacher complexity bound

A stability result of the Metropolis-Hasting
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