Generalization Bounds for Model-based Algorithm Configuration

Zhiyang Chen, Hailong Yao, Xia Yin

Tsinghua University, University of Science and Technology Belijing

Algorithm Configuration

Algorithms in practice have tunable parameters which
greatly affect the performance.

A carefully selected parameter configuration makes the
algorithm perform strong on particular instances.

Domain Default vs. Optimized

Answer Set Solving [Gebser et al. 2011] up to 14x speedup
Al Planning [Vallati et al. 2013] up to 40x speedup
Mixed Integer Programming [Hutter et al. 2010] up to 52x speedup
Satisfiability Solving [Hutter et al. 2017] up to 3000x speedup

Minimum Vertex Cover [Wagner et al. 2017] up to 9% absolute impr.
Machine Learning [Feuer et al. 2015] up to 35% absolute impr.
Deep Learning [Zimmer et al. 2020] up to 49% absolute impr.

(Lindauer and Biedenkapp, 2020)

Manually tuning parameters are time-consuming.
Automated algorithm configurators (AC) are proposed
to find promising parameters.
- Sample a set of problem instances as a training set.
- Find a high-performing configuration on this set.

Sampled
Instances

Instance | with
parameter 6

>

Algorithm Target
Configurator Algorithm

Parameter
domain

4

Objective on |
and 0

Objective
(run-time)

\/
Final Configuration 6*

Expected performance on distribution

Model-based Algorithm Configuration

Model-based AC is the most popular approach in
practice, based on a Bayesian optimization framework:
1. Randomly sample a number of initial parameters.
2. Evaluate these params on the training set.

3. Build a dataset of tuples <param, instance feature,
algorithm performance>, and train a surrogate
model predicting the performance.

4. Use a local search method to find a promising param
configuration based on the surrogate model.

5. Evaluate this configuration, update the dataset and
Goto Step 3 until the iteration limit is exceeded.

Generalization Bounds

Though model-based AC performs well in practice, a
theoretical question remains unsolved:

The parameters found by algorithm configurators
are evaluated on sampled problem instances
from a distribution. Why do they perform well on
other unseen instances?

Our contributions: We answer this question by
presenting a generalization guarantee for model-based
AC under mild assumptions.

Training set Unseen

4 N ([2

Instance 1 | | Instance 2 | | Instance 3| - Instance

N\ J

J

7

Eropu(@,I)] — 237" w8,)

Average performance on training set

...’T\.‘..é ;.&‘0,
ﬁ. NEURAL INFORMATION
"'a?. PROCESSING SYSTEMS

Our Settings

» Continuous parameter space in [0,1]" and bounded

performance metric in [0,1]

 Random forest surrogate model
« Expected improvement acquisition function
« Sampling promising parameters using Metropolis-

Hastings

Our Main Theorem

m I.1.d. instances

Q decision trees in the random forest model

n parameters and d features of problem instances
T iterations

The expected generalization error is

o\ (e y2)

Our Technique

Generalization bound via algorithmic stability

Prove the stability of model-based AC via bounding
the KL divergence between two perturbed path

A uniform stability result on the random forest model
via a dual Rademacher complexity bound

A stability result of the Metropolis-Hasting

	幻灯片 1

