
PatLabor: Pareto Optimization of Timing-Driven Routing Trees

Zhiyang Chen1, Hailong Yao23, Xia Yin1
1Tsinghua University, 2University of Science and Technology Beijing,

3Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education of China

Abstract—Wirelength is the fundamental metric for VLSI routing.
With the advancement of new technologies, wire delay has also become
a significant factor for timing performances. It is thus necessary to
consider both wirelength and delay in routing tree construction, i.e.,
timing-driven routing trees. Prior methods propose various heuristics to
balance wirelength and delay with a tunable parameter, which cannot
compute the full Pareto frontier. In this work, we propose PatLabor, a
practical method for timing-driven routing. PatLabor directly optimizes
the Pareto set, which obtains tighter Pareto curves than prior methods
and does not require parameter tuning. PatLabor obtains all Pareto-
optimal solutions on small-degree nets up to 9 pins and is theoretically
guaranteed by provable time complexity and approximation bounds.
Experimental results verify our theoretical findings and show that
PatLabor obtains tighter Pareto curves than state-of-the-art methods
on ICCAD-15 benchmarks. For example, PatLabor obtains up to 58.5%
more Pareto-optimal solutions than prior methods for degree-9 nets.

I. INTRODUCTION

Timing has become a critical performance metric for modern
VLSI design. As Markov [1] points out, with the advancement of
new technologies, wire delay has become a significant factor in
performance issues. It is hence necessary to consider both wirelength
and delay in the routing stage [2]. Therefore, we study the problem
of timing-driven routing trees: Given a degree-n net with one pin as
the source and other n−1 pins as sinks, the objective is to construct
a rectilinear Steiner tree topology for these pins that minimize both
the total wirelength and the path lengths from the source to sinks.
However, these two objectives may be contradictory to each other.
Instead of finding a best-of-both-world solution, we aim to find a set
of solutions, targeting the Pareto frontier of these two objectives.
We study and propose algorithmic methods for bicriterion Pareto
optimization of timing-driven routing trees (see Figure 1).

Why Pareto optimization? Computing a Pareto set of solutions
for bicriterion problems provides more decision options and better
characterizes the relationship between objectives. Recent work on
global routing [3] shows that selecting net topologies from a candidate
solution set may improve the performance of global routers. Pareto
optimization for timing-driven routing trees can be naturally applied
to timing optimization in global routing.

A. Our Contributions

Our main contributions are listed as follows:
• We study the size of Pareto frontiers for timing-driven routing

trees. We prove that routing instances have only a polynomial
size of the Pareto frontier in expectation using smoothed analy-
sis. This provides theoretical foundations for Pareto optimization
of timing-driven routing trees. (Section III)

• We propose algorithms for Pareto optimization of timing-driven
routing, including an exponential-time exact algorithm and a
polynomial-time approximation algorithm. We prove time com-
plexity and approximation bounds. Although these algorithms
cannot be directly applied in practice, they serve as important
building blocks for our practical methods. (Section IV)

Corresponding author: Hailong Yao. This work was supported by the Key
Program of National Natural Science Foundation of China (No. 62034005).

1.00 1.01 1.02 1.03 1.04 1.05
Wirelength w

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

De
la

y
d

Pareto dominated area
Pareto frontier (Ours)
SALT [5]
YSD [6]

Fig. 1. An example of Pareto optimization from ICCAD-15 benchmarks. Our
method obtains the full Pareto frontier while prior methods cannot.

• Based on the theoretical results, we propose PatLabor, a prac-
tical method for Pareto optimization of timing-driven routing
trees. For small-degree nets (n ≤ 9), we construct lookup
tables to compute the Pareto frontier optimally and efficiently.
For large-degree nets, we propose a local search heuristic to
approximate the Pareto frontier. (Section V)

• Experimental results on ICCAD-15 benchmarks and randomly
generated instances illustrate the effectiveness of PatLabor. We
first empirically verify our theoretical results in Section III.
Then, we present results of constructing lookup tables for small-
degree nets and show that our construction method is about
441× faster than FLUTE [4]. Finally, we empirically show that
PatLabor obtains tighter Pareto curves than previous timing-
driven routing algorithms [5] [6]. For example, PatLabor obtains
up to 58.5% more solutions on the Pareto frontier than prior
methods for degree-9 nets. (Section VI)

B. Comparisons with Related Work

Rectilinear Steiner minimum trees (RSMT). The most basic routing
tree problem is to minimize the total wirelength. Many methods [7]
[8] [4] [9] have been proposed to solve RSMT, among which the most
popular method is FLUTE [4]. It is worth noting that our idea of using
lookup tables for small-degree nets is motivated by FLUTE. FLUTE
uses an exhaustive search on boundary compaction to generate lookup
tables. However, we propose a new dynamic-program-based method
to generate lookup tables, which is more efficient than FLUTE.
Rectilinear Steiner minimum arborescence (RSMA). The RSMA
problem [10] [11] [12] aims to find the shortest path Steiner tree for
the net with minimum total wirelength. Córdova and Lee (CL) [11]
propose a 2-approximation algorithm, which is the most popular for
RSMA construction in practice.

Note that RSMT and RSMA are NP-hard [13] [14]. Both RSMT
and RSMA are single-objective problems, which are insufficient for
timing-driven routing since it has two objectives.
Timing-driven routing trees. Alpert et al. [2] propose Prim-Dijkstra
(PD-II), an algorithm blending Prim and Dijkstra to balance the
total wirelength and the maximum path length. Chen and Young [5]
propose SALT, a method based on a classic shallow-light tree algo-
rithm [15], together with post-processing heuristics. The most recent
work is due to Yang, Sun, and Ding (YSD) [6], which combines

TABLE I
THE LIST OF NOTATIONS.

Notation Implication
Õ(f(n)) f(n) · (logn)O(1)

O∗(f(n)) f(n) · nO(1)

n The number of pins
∥ · ∥1 The l1 norm (rectilinear distance)

P = {p1, . . . , pn} A set of pins with each pi = (xi, yi)
(r, P) A problem instance with source r and pins P
T A rectilinear Steiner routing tree

w(T) The wirelength of T
d(T) The delay of T

s(T) = (w(T), d(T)) The optimization objectives of T
s1 ⪯ s2 Pareto dominance

S = {si(Ti)}i A set of solution objectives
l1, . . . , l2n−2 The lengths of Hanan grids (see Figure 3)

a neural network for small-degree nets, and a divide-and-conquer
framework for large-degree nets. More older work [16] [17] [18] are
omitted due to the page limit. Prior methods introduce parameters
to balance wirelength and delay, which is different from our Pareto
optimization method.
We outline some superior features of our method:
The first Pareto optimization method. To the best of our knowledge,
this is the first work that directly optimizes the Pareto curve of timing-
driven routing. Previous methods introduce parameters to balance the
two objectives and generate only one solution for a single parameter
value. Tuning parameters is usually painful for heuristic algorithms.
Li et al. [19] use a complicated neural network to predict the
parameters for PD-II and SALT, which brings heavy training and
inference overhead. Our method directly outputs a set of solutions
on the Pareto curve, and users can choose any solution they need,
without spending time on parameter tuning.
Optimality on small-degree nets. Our method ensures Pareto op-
timality for nets with n ≤ 9 pins. Note that none of the prior
methods [2] [5] [6] provide optimality guarantees even for nets with
n = 5 pins. Our method applies an exact dynamic programming
algorithm to produce lookup tables containing all potentially optimal
tree topologies for small-degree nets, and is hence able to produce
all solutions on the Pareto frontier.
Tighter Pareto curves on large-degree nets. For nets with n > 9
pins, our method theoretically has the potential to obtain tighter
Pareto curves. In Section IV, we prove an approximation bound
showing that our method can approximate every solution on the
Pareto frontier. This is a stronger guarantee compared with SALT,
which uses a parameter to control the tradeoff of the approximation
ratios. Moreover, our method avoids the issue caused by the weighted
sum method in YSD, which only obtains convex Pareto curves.

II. PRELIMINARIES

Notations. Following the convention of algorithm analysis, we use
Õ(f(n)) = f(n) · (logn)O(1) to suppress logarithmic factors, and
use O∗(f(n)) = f(n) · nO(1) to suppress polynomial factors for
simplicity of notations.

We follow classic notations for multi-objective optimization. We
use s = (s1, s2) to denote two objectives of a solution. Since timing-
driven routing is a minimization problem, given two solutions s ̸= s′,
we say s dominates s′ (formally, s ⪯ s′) if s1 ≤ s′1 and s2 ≤ s′2.
The Pareto curve (or Pareto set) is a set of solutions {s1, . . . , sk}
such that si ⪯̸ sj for any i ̸= j. The Pareto frontier is the optimal
Pareto curve. Solutions on the Pareto frontier are Pareto-optimal.
Problem formulation. Following previous work [2] [6], we define
the timing-driven routing problem. We are given a set of points P =

(a) (b) (c)

Fig. 2. An example of timing-driven routing trees from ICCAD-15 bench-
marks with three Pareto-optimal solutions. Solid squares are source pins. (a)
Minimizing total wirelength (w = 23882, d = 13397); (b) Minimizing
sink delay (w = 26084, d = 11538); (c) Balancing wirelength and delay
(w = 24879, d = 11682).

𝑙1 𝑙2 𝑙3 𝑙4

𝑙5

𝑙6

𝑙7

𝑙8

(a)
𝑙1 𝑙2 𝑙3 𝑙4

𝑙5

𝑙6

𝑙7

𝑙8

(b)

Fig. 3. (a) The Hanan grid; (b) A routing tree constructed on the grid. Squares
represent pins and circles represent Steiner points.

{p1, . . . , pn} from the metric space (R2, ∥ · ∥1), where each point
pi = (xi, yi) denotes a pin from the net to be routed. We use r =
p1 = (x1, y1) to denote the source of the net and the remaining
n − 1 pins are sinks. The target is to construct a rectilinear Steiner
tree T = (V,E) for P rooted at r, considering both the sum of edge
lengths of T (wirelength w(T)) and the maximum path length from
source r to any sink pi ∈ P (i ≥ 2) (delay d(T)). Previous work
minimizes a weighted sum of w(T) and d(T). We instead aim to
compute the Pareto frontier of (w(T), d(T)) (an example of three
Pareto-optimal solutions is shown in Figure 2).

It is folklore that an optimal RSMT can be constructed on the
Hanan grid [20]. We point out that the same holds for the Pareto-
optimal timing-driven routing trees. We use l1, . . . , ln−1 to denote
lengths of horizontal grid edges, and ln, . . . , l2n−2 to denote lengths
of vertical edges on the Hanan grid (see Figure 3). The notations are
summarized in Table I.

III. ANALYSIS OF PARETO FRONTIERS

In this section, we analyze the Pareto frontier of timing-driven
routing trees. It is known that a multi-objective problem usually has
an exponential size of the Pareto frontier [21], which makes solving
multi-objective optimization intractable (even if P = NP).

Theorem 1: There exists a timing-driven routing instance (r, P)
such that the number of solutions on the Pareto frontier is 2Ω(n).
Proof Sketch: The construction of the instance is illustrated in
Figure 4. The instance consists of m “S-shape” gadgets, with 11
pins each. The m gadgets are placed in a diagonal pattern, with a
source pin at the lower-left corner and another pin at the upper-right
corner. In the k-th gadget, we set x = 2k−2 and y = 2k−1+2k−3. In
total, we have n = 11m+2 pins. It can be verified that the number
of Pareto-optimal solutions is at least 2m = 2(n−2)/11 = 2Ω(n).

However, such bad instances never appear in practice. In the
following, we show that the size of the Pareto frontier for timing-
driven routing in real-world testcases is only polynomial. Based
on this result, we present efficient algorithms for computing Pareto
frontiers of timing-driven routing in the next section.

Gadget 1

...

Source

Gadget k

𝑥 𝑥

𝑦

𝑦

𝑦

𝑦

Gadget k

Gadget m

...

Fig. 4. The construction of an instance with an exponential number of
solutions on the Pareto frontier in Theorem 1.

One way of modeling real-world instances is to use average-case
analysis, assuming the pins are uniformly random points on the
routing plane. However, this assumption is too strong. In practice,
the problem instance cannot be seen as purely random instances on
the entire routing plane. Alternatively, our idea is to study the Pareto
frontier using smoothed analysis, which is a popular algorithmic
framework to explain the practical behavior of many algorithms
proposed by Spielman and Teng [22]. The philosophy is that in
practice, there is always some small noise in the problem instance,
and the performance of an algorithm seldom achieves the worst-case
bound. In timing-driven routing, the positions of pins are generated by
VLSI placement. A small perturbation on the positions of a pin does
not impact placement-and-routing results greatly. The assumption is
hence reasonable.

Smoothed analysis interpolates between worst-case analysis and
average-case analysis. It is a relaxation of worst-case analysis, but
with a weaker assumption than average-case analysis.

Definition 1 (Smoothed timing-driven routing instances): With-
out loss of generality, we assume the coordinates of pins in the routing
instance P = {p1, . . . , pn} lie in [0, 1]. In a κ-smoothed instance,
the coordinates xi and yi of pins are sampled independently from
distributions with probability density at most κ on [0, 1].

For example, consider a degree-2 net with x1 uniformly sam-
pled from [0, 0.25], y1 sampled from [0.1, 0.35], x2 sampled from
[0.6, 0.85] and y2 sampled from [0.65, 0.9]. We say this net is a 4-
smoothed instance. As κ→∞, the framework reduces to worst-case
analysis. If κ = 1, the framework reduces to average-case analysis.

Theorem 2: The expected number of solutions on the Pareto
frontier for κ-smoothed timing-driven routing is O(n3κ).
Proof Sketch: Due to the page limit, we only sketch the proof
ideas. The main proof technique is to divide the range of objectives
into small intervals. Since the edge weights are κ-smoothed, the
probability density is at most κ. Therefore, the probability of a Pareto-
optimal solution falling into an interval of length l is only l · κ. The
total length of all intervals is only poly(n), and the expected number
of optimal solutions is hence at most poly(n) · κ.

In practice, we assume the nets contain small randomness, and thus
regard κ as a constant. Based on Theorem 2, it is possible to design
efficient algorithms for timing-driven routing trees.

IV. THEORETICAL ALGORITHMS FOR TIMING-DRIVEN ROUTING

In this section, we present two theoretical algorithms for timing-
driven routing trees. The time complexities of both algorithms depend
on the size of Pareto frontiers, and are thus efficient by Theorem 2.
Although they cannot be directly applied in practice, their ideas serve
as significant building blocks for our practical method in the next
section.

A. An exponential-time exact algorithm

Dreyfus-Wagner (DW) [23] is a classic algorithm for minimum
Steiner trees on graph metrics, which finds an exact solution in
O∗(3n) time using a dynamic program. We can adapt this algorithm
to compute the full Pareto frontier of timing-driven routing trees.

Our algorithm, namely Pareto-DW, is described as follows: Let
Sv,Q denote the Pareto frontier of routing trees with source v and
sinks Q. Here, v is an arbitrary node on the Hanan grid, and Q ⊆ P
is a subset of pins. Each Sv,Q is a Pareto set of solution objectives
(w, d). Then, Sr,P is our desired result. We compute Sv,Q using
dynamic programming,

Sv,Q = Pareto

{
∪u {Su,Q + ∥u− v∥1} ,
∪Q1⊆Q

{
Sv,Q1 ⊕ Sv,Q\Q1

}
.

(1)

Note that Sv,Q is a set of vectors. For any solution sets S, S′ and
any x ∈ R, we define

S + x = {(w + x, d+ x) | (w, d) ∈ S} ,
S ⊕ S′ = {(w1 + w2,max {d1, d2})

| (w1, d1) ∈ S, (w2, d2) ∈ S′}.

Note that S + x and S ⊕ S′ can be computed in O(|S|) and
O(|S| · |S′|) time, respectively. We also define Pareto(S) =
{s ∈ S | ∄ s′ ∈ S, s′ ⪯ s}, i.e., eliminating all solutions in S off the
Pareto curve. Note that this is equivalent to finding maximal points
on a plane, which can be computed in O(|S| log |S|) time [24].

Theorem 3: Pareto-DW finds the Pareto frontier of timing-driven
routing in O∗(3n · |S|2) time, where |S| is the largest number of
solutions in Sv,Q for any v,Q.

This theorem can be proved by exploiting the recursive structure
of Steiner trees, and the proof is omitted due to the page limit.
We point out that by Theorem 2, the size of Pareto frontier |S|
is only polynomial in n. Therefore, in practice, we can solve
timing-driven routing using O∗(3n) time, the same as the vanilla
Dreyfus-Wagner. Without smoothed analysis, the time complexity
may become O∗(3n) ·2O(n) ·2O(n) = 12O(n), which is unacceptable
even for n ≤ 10 pins.

There are also many acceleration techniques for Pareto-DW. Al-
though they cannot improve the worst-case complexity theoretically,
they can effectively prune the states of the dynamic program. We
introduce them in Section V.

B. A polynomial-time approximation algorithm

Pareto-DW can only solve small-degree instances due to the expo-
nential complexity. Using Pareto-DW as a subroutine, we can design a
polynomial-time approximation algorithm for timing-driven routing.
The idea is to extend the Kalpakis-Sherman (KS) heuristic1 [26] to
a multi-objective version: We use divide-and-conquer to partition the
routing plane into sub-problems. When the number of pins is small
enough, we use Pareto-DW to compute the exact Pareto frontier. We
formally describe the algorithm as follows.
Algorithm Pareto-KS(P):
1. If |P | ≤ logn, return Pareto-DW(P) to obtain the Pareto frontier.
2. We find a pin pi ∈ P such that there are at least ⌊|P |/2⌋ − 1

pins on each side of pi (divide on the x- or y-axis alternatively)
to partition the pins into P1 and P2.

1In essence, the classic RSMT heuristic, FLUTE [4], is a variant of the KS
algorithm. The effectiveness of KS in practice is the reason why we choose to
adapt KS instead of other algorithms, e.g., Arora’s PTAS for geometric Steiner
trees [25] (although Arora’s may achieve better approximation bounds).

3. Call Pareto-KS(P1) and Pareto-KS(P2) to obtain S1 and S2

recursively. We select the pin closest to r as the source pin.
4. Return the combination of the solutions in S1 and S2.

Definition 2 (Pareto approximation): Given a multi-objective
minimization problem, and an algorithm that outputs a Pareto set S
for any instance of the problem, we say the algorithm c-approximates
the Pareto frontier, if, for any solution s on the Pareto frontier, we
can find s′ ∈ S, such that s′ ⪯ c · s.

Theorem 4: Pareto-KS is an O(
√

n/ logn)-approximation algo-
rithm in Õ(n2 · |S|2) time, where |S| is the size of the largest Pareto
set during the execution of Pareto-KS.
Proof Sketch: We only prove the time complexity due to the page
limit. The proof of the approximation ratio can be obtained by
showing that timing-driven routing is a sub-additive Euclidean func-
tional [26] and is omitted.

Pareto-KS partitions the routing plane into Θ(n/ logn) sub-
rectangles. In each rectangle, there are at most logn pins. The
complexity of computing the Pareto frontier in each rectangle is hence
O(3logn · poly(logn)) = Õ(n). Given two Pareto sets S1, S2, we
can compute their Pareto sum in Õ(|S1| · |S2|) time. Therefore, the
total complexity is Õ(n) ·O(n/ logn) · Õ(|S|2) = Õ(n2 · |S|2).

V. PRACTICAL METHODS FOR TIMING-DRIVEN ROUTING

In this section, based on Pareto-DW and Pareto-KS, we present
PatLabor (Pareto optimization with Lookup tables and local search),
a practical method for timing-driven routing. PatLabor consists of two
parts: For small-degree nets, we build lookup tables to efficiently and
optimally solve the problem. For large-degree nets, we present a local
search heuristic to approximate the Pareto frontier.

A. Lookup tables for small-degree nets

Although the Pareto-DW algorithm is fast for small-degree nets, it
is not efficient enough to route millions of nets in VLSI designs. Moti-
vated by the lookup-table-based FLUTE heuristic [4] for RSMTs, we
store all potentially Pareto-optimal routing tree topologies in a lookup
table for all instances with n ≤ λ so that we can directly access the
Pareto frontier efficiently. Following FLUTE, we set λ = 9. We use
modified Pareto-DW to generate the lookup tables.

For each possible permutation of pins P and a source r, we can
build a Hanan grid for pins and use l1, . . . , l2n−2 to denote the
lengths of grid edges as in Figure 3. For degree-n nets, there are
at most n! different patterns of the Hanan grid. As in Pareto-DW,
we use Sv,Q to denote the set of potential Pareto-optimal topologies
with source v and pins Q. We follow the DP Equation (1). However,
a solution in Sv,Q is no longer (w, d) ∈ R2, but in the form of(

2n−2∑
i=1

wili,max
i

2n−2∑
j=1

dij lj

)
.

We instead use a vector W = (wi) and a matrix D = (dij) to
represent a solution. By definition, we have the following proposition.

Lemma 1: Given two solutions (W (1), D(1)) and (W (2), D(2)),
(W (2), D(2)) can be safely pruned if for any l1, . . . , l2n−2 ≥ 0,
2n−2∑
i=1

(w
(2)
i −w

(1)
i) ≥ 0 ∧ max

i

2n−2∑
j=1

d
(1)
ij lj ≤ max

i

2n−2∑
j=1

d
(2)
ij lj . (2)

The condition in Equation (2) is a first-order proposition, and hence
can be verified by an SMT solver. We use an SMT solver [27] to
safely prune non-optimal solutions during the generation of lookup
tables. Since the number of pins is small, the SMT solver is efficient
enough.

(a) (b)

Fig. 5. Pruning techniques for Pareto-DW. The solid square is the source
pin. (a) The pruned Hanan grid for Figure 3 after applying Lemma 2; (b) An
example of the source on the outside of the bounding box for Lemma 3.

To accelerate generating lookup tables, we apply some reduction
tricks. We reduce the number of Hanan grid patterns by breaking
symmetries. There are in total n! · n choices of (r, P). However, if
two patterns are equivalent under mirror and rotation transformations,
only one pattern is needed to store in the table. Another important
trick is to prune useless states in dynamic programming (Figure 5(a)).

Lemma 2: A node v = (x, y) on the Hanan grid is called a lower-
left-corner node2, if there are no pins pi = (xi, yi) ∈ P such that
xi ≤ x, yi ≤ y. The states Sv,Q for any lower-left-corner node v
can be safely pruned in Equation (1).

We can also avoid subset enumeration in the dynamic program for
many states (Figure 5(b)).

Lemma 3: For a node v on the Hanan grid and a subset of pins
S ⊆ P , if v is outside BB(S) (the bounding box of S), we have
Sv,Q = Su,Q + ∥v− u∥1, where u is the projection of v on BB(S).

The last technique is based on separators for outer-planar graphs.
For the definition of separators, see any parameterized algorithm
textbooks, e.g., Cygan et al. [28].

Lemma 4: For a node v and a subset of pins S ⊆ P , if all pins in S
lie on the boundary of the grid and we relabel them by 1, 2, . . . , |S|
in the clockwise order (the labels are circular, i.e., |S| and 1 are
adjacent), then, in Equation (1), it suffices to consider transitions
Sv,Q1 ⊕Sv,Q\Q1

for Q1 such that the pins have consecutive labels.
Lemmas 2, 3 and 4 can greatly reduce the running time of Pareto-

DW. We omit the proofs of lemmas due to the page limit.

B. Local search heuristics for large-degree nets

For nets with degree n > λ, we reduce the problem to small-
degree nets and apply the lookup table. A direct method is to replace
dynamic programming in Pareto-KS with lookup tables.

Remark 1: If we use lookup tables for nets with degree-λ or less in
Pareto-KS, we can instead obtain an O(

√
n/λ)-approximation bound

and an Õ(nλ|S|2) time bound in Theorem 4. In practice, most nets
have n ≤ 50 pins, and hence n/λ can be seen as O(1).

Although Pareto-KS is good in theory, it is not good enough in
practice. The main reason is that the divide-and-conquer framework
cannot appropriately exploit the relative positions of the source pin
r and a sub-problem. Following the philosophy of Pareto-KS, we
instead apply a local search method. We still reduce the problem to
sub-problems, but focusing on pins with large delay. The algorithm
is formally described as follows.
PatLabor for n > λ:
1. We maintain a Pareto set of tree solutions T . Initially, we call

FLUTE [4] to build an RSMT T0 and set T = {T0}.
2. Select a tree T ∈ T with the largest maximum delay d(T). Choose

λ− 1 pins in T based on a given policy π. Together with source
r, regenerate the topology of these λ pins by accessing lookup
tables and obtain a set of new tree topologies T1, . . . , Tm.

2We can similarly define corner nodes on the other three corners.

3. Let T ← T ∪ {T1, . . . , Tm}. Eliminate solutions in T that are
off the Pareto curve.

4. Repeat steps 2 and 3 for ⌊n/λ⌋ times.
Note that if we restrict the local search to access each pin only

once, the algorithm is indeed a variant of Pareto-KS. In step 2, after
a local search iteration, the new topologies may be sub-optimal since
the local topology may be intersected with other n−λ pins. We use
post-processing techniques as in SALT [5] to refine these issues.

An important component in PatLabor is the policy π to select
pins on which we perform local search. We define a heuristic
scoring function for each pin, and iteratively select λ − 1 pins
with the maximum score. Suppose we have already selected λ′ pins
p1, . . . , pλ′ , for each unselected pin p, let

score(p) = α1 · ∥r − p∥1 + α2 · distT (r, p)
− α3 · min

1≤λ0≤λ′
∥p− pλ0∥1 − α4 · HPWL(p, p1, . . . , pλ′),

where α1, α2, α3, α4 ≥ 0 are parameters. The first term ∥r− p∥1 is
the rectilinear distance between source r and p. The second term
distT (r, p) is the distance between r and p on the current tree
topology T . We always select pins far from the source such that
the delay is large. The third term min1≤λ0≤λ′ ∥p − pλ0∥1 is the
minimum distance between p and already selected pins. The fourth
term HPWL(p, p1, . . . , pλ′) is the half-perimeter wirelength of p and
already selected pins. If no pins have been selected, these two terms
are zero. After an iteration of local search, the selected pins are
connected in a subtree. We hope these pins are near to each other.
Thus, it is better for the first two terms to be large and the last two
terms to be small.

We select the best parameters for policy π using a reinforcement
learning apparatus. We use policy iteration [29] to train the pa-
rameters α. Concretely, we first randomly sample the selection of
pins and run PatLabor on randomly generated testcases. We collect
a set of selections of pins (p1, . . . , pλ−1) such that the algorithm
performances are better, and use linear regression to maximize the
score function on these collected data. Motivated by the philosophy
of curriculum learning [30], we choose different values of α(n)

for different degrees of n. We initially train the value of α(n) for
n = λ + 1 = 10. Suppose we have already selected α(n) for some
degree-n. Then, we use α(n) as a warm-start for degree-(n+1) and
further optimize α(n+1). Finally, we obtain the policy π for each
n ≥ 10. We finish training when n = 100 since most nets in our
experiments have at most 100 pins.

We can use statistical learning theory to guarantee the general-
ization ability of the learned parameters. The following theorem is
obtained by an upper bound on the pseudo-dimension [31] of the
performance metric. We omit the proof due to the page limit.

Theorem 5: Let D be an arbitrary distribution of degree-n timing-
driven routing instances. Suppose the parameters α are learned based
on m i.i.d. samples x1, . . . , xm from D. Let perf(x, α) denote any
performance metric of PatLabor with parameters α on instance x.
Then, with probability at least 1− δ, for any α ∈ R4, we can bound
the generalization gap by∣∣∣∣∣ 1m

m∑
i=1

perf(xi, α)− Ex∼D[perf(x, α)]

∣∣∣∣∣ ≤ Õ

(√
n

m

)
.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results. Following previous
work, we use the ICCAD-15 benchmark to evaluate PatLabor and
other baselines. The benchmark consists of 8 designs, with about
1.3× 106 nets (we omit degree-2 and -3 nets since they are trivial).

4 5 6 7 8 9
Net degree

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Nu
m

be
r o

f o
pt

im
al

 so
lu

tio
ns Frontier Size

Fitted Line

Fig. 6. Sizes of the maximum Pareto frontier from the ICCAD-15 benchmark.
The fitted line (y = 2.85x− 10.9) is computed by linear regression.

TABLE II
STATISTICS OF THE LOOKUP TABLE.

Degree #Index #Topo Size (MB) Time
4 24 1.67 < 0.01 0s
5 220 4.6 < 0.01 0s
6 1008 10.67 < 0.01 0s
7 5824 32.52 0.19 4.9s
8 46880 107.05 6.23 276s
9 429516 378.05 240 4.68h

Total 483472 - 246 4.76h

#Index = the number of pairs (r, P), i.e., the source pin and the pin permutation.
#Topo = the average number of potentially optimal tree topologies.
Size = the storage size of lookup tables.
Time = (parallel) running time of generating the lookup table.

A. The size of Pareto frontiers

The analysis of Pareto frontiers in Section III is verified empir-
ically. We obtain the number of solutions on the Pareto frontier.
For all nets with degree n ≤ 9, the maximum size of the Pareto
frontier is computed. The result is illustrated in Figure 6. Although
the worst-case bound on the Pareto frontier size is exponential, the
number of optimal solutions only grows roughly ∼ 2.85n on real-
world testcases. For n = 9, the maximum Pareto frontier size is only
16. This verifies our analysis in Theorems 1 and 2, but also illustrates
our bound is still slightly loose.

B. Generation of lookup tables

We present experimental results on generating lookup tables using
the proposed Pareto-DW in Section V. Table II lists the statistics of
our lookup tables. The lookup tables are generated on an Intel Xeon
2.30GHz CPU with 16 cores. The total number of tree topologies
is about 1.7× 108. Using 16 threads, we generate all lookup tables
in less than 5 hours. The serial running time is 49.9 hours. As a
rough comparison, FLUTE [4] only generates about 4.5×105 RSMT
topologies3 using 58.2 hours (on a 3.40GHz Intel Pentium 4 CPU).
Our method is about (1.7×108)/(4.5×105)×(58.2/49.9) ≈ 441×
on average faster than FLUTE for each topology.

Directly storing all topologies results in a huge table. We find that
for a single set of pins with different sources, many topologies are the
same. Moreover, some groups of pin sets have similar topologies with
slight differences on the boundary pins. We group them into clusters
and store only one topology for each cluster. This greatly reduces the
table size. The tables can be read into memory in less than 5 seconds,
occupying < 250MB memory space, which is negligible for routing
millions of nets. It is also faster than loading neural network weights
compared with YSD [6], which trains a model for each degree n and
each weighted sum parameter.

3Our number of tree topologies is much larger than RSMT’s since timing-
driven routing trees (a) depend on the position of the source; (b) consider two
optimization objectives.

1.00 1.02 1.04 1.06 1.08
Wirelength w

1.00

1.05

1.10

1.15
De

la
y

d
Small-degree nets

FLUTE
CL
YSD
SALT
PatLabor (Ours)

0 20 40 60 80 100 120
Time (s)

PatLabor

SALT

YSD

(a) Small-degree nets (n ≤ 9)

1.00 1.02 1.04 1.06 1.08 1.10
Wirelength w

1.00

1.05

1.10

1.15

1.20

De
la

y
d

Large-degree nets
FLUTE
CL
YSD
SALT
PatLabor (Ours)

0 100 200 300
Time (s)

PatLabor

SALT

YSD

(b) Large-degree nets (n > 9)

1.000 1.025 1.050 1.075 1.100 1.125 1.150
Wirelength w

1.0

1.2

1.4

1.6

De
la

y
d

Degree-100 random nets
FLUTE
CL
YSD
SALT
PatLabor (Ours)

0 2 4 6 8
Time (s)

PatLabor

SALT

YSD

(c) Degree-100 randomly generated nets

Fig. 7. Averaged Pareto curve and the total running time comparisons on (a) small-degree nets; (b) large-degree nets; (c) 100 randomly generated degree-100
nets. The green circle represents RSMT by FLUTE and the purple circle represents RSMA by CL. The wirelength w and the delay d are normalized by
dividing w(FLUTE) and d(CL). Note that the Pareto curves for small-degree nets are averaged on non-optimal nets as in Table III.

TABLE III
THE RATIO OF NON-OPTIMAL NETS FOR n ≤ 9.

n #Net PatLabor YSD [6] SALT [5]
4 364670 0.0% 0.0% 0.0%
5 256663 0.0% 0.3% 0.9%
6 103199 0.0% 7.8% 11.9%
7 75055 0.0% 23.3% 24.3%
8 42879 0.0% 36.0% 34.7%
9 62449 0.0% 49.5% 45.4%

Total 904915 0.0% 8.0% 8.4%

TABLE IV
THE TOTAL NUMBER OF SOLUTIONS ON THE PARETO FRONTIERS FOUND

BY THREE METHODS FOR n ≤ 9.

n PatLabor YSD [6] SALT [5]
4 364670 364670 364670
5 297636 296634 295053
6 137460 128237 123590
7 116941 100012 92083
8 77325 49398 52767
9 132487 72105 77483

Total 1.0 0.898 0.893

C. Comparisons on Pareto curves

We implement PatLabor using C++ and compare it with two
state-of-the-art timing-driven routing tree algorithms, SALT [5] and
YSD [6]. As the open-source code of YSD is incomplete, we imple-
ment some components of YSD based on the paper. All experiments
are executed on an Intel Xeon 2.30GHz CPU with 16 cores, except
YSD, which uses a neural network model and is evaluated on an
NVIDIA H100 GPU.

For small-degree nets, we first evaluate the ratio of non-optimal
nets in Table III. An algorithm is non-optimal on a net if it cannot
find at least one solution on the Pareto frontier. The usage of lookup
tables ensures the optimality of PatLabor, while both YSD and SALT
are non-optimal for n ≥ 5. (We run YSD and SALT with different
parameters to obtain Pareto sets.) Among 904,915 nets with degree
n ≤ 9, there are 72,393 (resp. 76,013) nets on which YSD (resp.
SALT) cannot achieve the Pareto frontier. Specifically, for n = 9,
there are 30,912 (resp. 28,352) out of 62,449 nets, on which YSD
(resp. SALT) is non-optimal. In contrast, there are zero non-optimal
nets for PatLabor. We also collect the total number of optimal

solutions found by three methods for n ≤ 9 in Table IV. There
are 115,463 (resp. 120,873) out of 1,126,519 solutions on the Pareto
frontier that YSD (resp. SALT) cannot find. Specifically, for n = 9,
there are 60,382 (resp. 55,004) out of 132,487 solutions that YSD
(resp. SALT) cannot find. PatLabor finds all Pareto-optimal solutions.

Figure 7(a) shows the Pareto curves of different methods for small-
degree nets. Since the baselines achieve optimal Pareto curves on
many small-degree nets, the curves are only averaged on non-optimal
nets by SALT and YSD as in Table III (i.e., either SALT or YSD
is non-optimal on these nets). PatLabor achieves the tightest Pareto
curve and is the fastest method due to the use of lookup tables4. In
total, PatLabor is about 1.35× faster than SALT.

For large-degree nets, the result is presented in Figure 7(b).
PatLabor also achieves the tightest Pareto curves. However, due
to the running time of combining Pareto sets, PatLabor is about
11.6% slower than SALT, but still much faster than YSD. Note that
most nets in the ICCAD-15 benchmark have less than 50 pins. To
compare the performances of different methods comprehensively, we
also randomly synthesize 100 nets with 100 pins, and evaluate all
methods. The result is presented in Figure 7(c). The Pareto curve of
PatLabor is almost the same as SALT’s for low total wirelength w,
but is tighter than SALT’s for high total wirelength. Note that YSD
uses a divide-and-conquer framework for large-degree nets, which
performs poorly for wirelength minimization.

VII. CONCLUSION

In this work, we study the timing-driven routing tree problem. We
first show the size of Pareto frontiers is only polynomial under the
smoothed analysis setting. Then, we propose theoretical algorithms
and a practical method, PatLabor, for timing-driven routing. Finally,
experimental results show that PatLabor obtains tighter Pareto curves
compared with state-of-the-art methods. A promising direction of
future work is to extend our approach to other metrics of routing
trees, such as congestion, multi-patterning lithography, and reliability.
It would also be interesting if timing-driven routing trees could be
integrated into global routing or even global placement engines.

4Note that YSD is much slower than SALT and PatLabor. Although it
is claimed in the paper [6] that YSD is more efficient than SALT, their
comparison is not fair. YSD uses batch inference on GPUs for the neural
model and SALT is only evaluated serially. In fact, SALT (and PatLabor, of
course) can be accelerated by multi-threading on the CPU.

REFERENCES

[1] I. Markov, “Limits on fundamental limits to computation,” Nature, vol.
512, pp. 147–54, 2014.

[2] C. J. Alpert, W.-K. Chow, K. Han, A. B. Kahng, Z. Li, D. Liu, and
S. Venkatesh, “Prim-Dijkstra revisited: Achieving superior timing-driven
routing trees,” in International Symposium on Physical Design, 2018, p.
10–17.

[3] W. Li, R. Liang, A. Agnesina, H. Yang, C.-T. Ho, A. Rajaram, and
H. Ren, “DGR: Differentiable global router,” in Design Automation
Conference, 2024.

[4] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 1, pp. 70–83, 2008.

[5] G. Chen and E. F. Y. Young, “SALT: Provably good routing topology
by a novel Steiner shallow-light tree algorithm,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 6, pp. 1217–1230, 2020.

[6] L. Yang, G. Sun, and H. Ding, “Towards timing-driven routing: An ef-
ficient learning based geometric approach,” in International Conference
on Computer Aided Design, 2023, pp. 1–9.

[7] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” SIAM
Journal on Applied Mathematics, vol. 30, no. 1, pp. 104–114, 1976.

[8] A. Kahng and G. Robins, “A new class of iterative Steiner tree heuristics
with good performance,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 11, no. 7, pp. 893–902, 1992.

[9] J. Liu, G. Chen, and E. F. Young, “REST: Constructing rectilinear Steiner
minimum tree via reinforcement learning,” in 58th ACM/IEEE Design
Automation Conference (DAC), 2021, pp. 1135–1140.

[10] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The
rectilinear Steiner arborescence problem,” Algorithmica, vol. 7, no. 1–6,
p. 277–288, 1992.

[11] J. Córdova and Y.-H. Lee, “A heuristic algorithm for the rectilinear
Steiner arborescence problem,” 1994.

[12] K.-S. Leung and J. Cong, “Fast optimal algorithms for the minimum
rectilinear Steiner arborescence problem,” in 1997 IEEE International
Symposium on Circuits and Systems (ISCAS), vol. 3, 1997, pp. 1568–
1571.

[13] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem
is NP-complete,” SIAM Journal of Applied Mathematics, vol. 32, pp.
826–834, 1977.

[14] W. Shi and C. Su, “The rectilinear Steiner arborescence problem is NP-
complete,” SIAM Journal on Computing, vol. 35, no. 3, pp. 729–740,
2005.

[15] M. Elkin and S. Solomon, “Steiner shallow-light trees are exponentially
lighter than spanning ones,” in IEEE 52nd Annual Symposium on
Foundations of Computer Science, 2011, pp. 373–382.

[16] J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh, and C. Wong, “Prov-
ably good performance-driven global routing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 11,
no. 6, pp. 739–752, 1992.

[17] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum
spanning trees and shortest-path trees,” Algorithmica, vol. 14, no. 4,
p. 305–321, 1995.

[18] R. Scheifele, “Steiner trees with bounded RC-delay,” Algorithmica,
vol. 78, no. 1, p. 86–109, 2017.

[19] W. Li, Y. Qu, G. Chen, Y. Ma, and B. Yu, “TreeNet: Deep point cloud
embedding for routing tree construction,” in Asia and South Pacific
Design Automation Conference, 2021, pp. 164–169.

[20] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM
Journal on Applied Mathematics, vol. 14, no. 2, pp. 255–265, 1966.

[21] A. Herzel, S. Ruzika, and C. Thielen, “Approximation methods for
multiobjective optimization problems: A survey,” INFORMS Journal on
Computing, vol. 33, no. 4, pp. 1284–1299, 2021.

[22] D. A. Spielman and S.-H. Teng, “Smoothed analysis: an attempt to
explain the behavior of algorithms in practice,” Communications of the
ACM, vol. 52, no. 10, p. 76–84, 2009.

[23] S. E. Dreyfus and R. A. Wagner, “The Steiner problem in graphs,”
Networks, vol. 1, no. 3, pp. 195–207, 1971.

[24] R. L. Graham, “An efficient algorithm for determining the convex hull of
a finite planar set,” Information Processing Letters, vol. 1, pp. 132–133,
1972.

[25] S. Arora, “Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,” Journal of the ACM,
vol. 45, no. 5, p. 753–782, 1998.

[26] K. Kalpakis and A. T. Sherman, “Probabilistic analysis of an enhanced
partitioning algorithm for the Steiner tree problem in Rd,” Networks,
vol. 24, no. 3, pp. 147–159, 1994.

[27] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2008, pp.
337–340.

[28] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms.
Springer, 2015.

[29] D. Bertsekas, Reinforcement Learning and Optimal Control, 2019.
[30] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum

learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, 2009, p. 41–48.

[31] R. Gupta and T. Roughgarden, “A PAC approach to application-specific
algorithm selection,” SIAM Journal on Computing, vol. 46, no. 3, pp.
992–1017, 2017.

